top of page
Tuan

Pre-trained sentence embedding models are the state-of-the-art of French sentence embeddings

Model is Fine-tuned using pre-trained facebook/camembert-large and Siamese BERT-Networks with 'sentences-transformers' on dataset stsb


Usage

The model can be used directly (without a language model) as follows:

from sentence_transformers import SentenceTransformer
model =  SentenceTransformer("dangvantuan/sentence-camembert-large")

sentences = ["Un avion est en train de décoller.",
          "Un homme joue d'une grande flûte.",
          "Un homme étale du fromage râpé sur une pizza.",
          "Une personne jette un chat au plafond.",
          "Une personne est en train de plier un morceau de papier.",
          ]

embeddings = model.encode(sentences)


Evaluation

The model can be evaluated as follows on the French test data of stsb.

from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from datasets import load_dataset
def convert_dataset(dataset):
    dataset_samples=[]
    for df in dataset:
        score = float(df['similarity_score'])/5.0  # Normalize score to range 0 ... 1
        inp_example = InputExample(texts=[df['sentence1'], 
                                    df['sentence2']], label=score)
        dataset_samples.append(inp_example)
    return dataset_samples

# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")

# Convert the dataset for evaluation# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")

# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")


Test Result: The performance is measured using Pearson and Spearman correlation:

Citation

@article{reimers2019sentence,
   title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
   author={Nils Reimers, Iryna Gurevych},
   journal={https://arxiv.org/abs/1908.10084},
   year={2019}
}


@article{martin2020camembert,
   title={CamemBERT: a Tasty French Language Mode},
   author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
   journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
   year={2020}
}

Files and versions can be downloaded here

The model can be tested here




Vous souhaitez en savoir plus sur notre entreprise, nos actualités, et d'autres sujets ?

Abonnez-vous à notre newsletter pour ne rien manquer !




9 views0 comments

Comments


Commenting has been turned off.
bottom of page